Swiss Point of Care # SARS-CoV-2 Antigen Rapid Test Package Insert REF L031-11823A English A rapid test for the qualitative detection of SARS-CoV-2 nucleocapsid antigens in nasal swab specimens. For professional in vitro diagnostic use only. ### INTENDED USE The SARS-CoV-2 Antigen Rapid Test is a lateral flow chromatographic immunoassay for the qualitative detection the nucleocapsid protein antigen from SARS-CoV-2 in nasal swab specimens directly from individuals who are suspected of COVID-19 by their healthcare provider within the first seven days of the onset of symptoms. The SARS-CoV-2 Antigen Rapid Test does not differentiate between SARS-CoV and SARS-CoV-2. Results are for the identification of SARS-CoV-2 nucleocapsid antigen. This antigen is generally detectable in upper respiratory samples during the acute phase of infection. Positive results indicate the presence of viral antigens, but clinical correlation with patient history and other diagnostic information is necessary to determine infection status. Positive results do not rule out bacterial infection or co-infection with other viruses. The agent detected may not be the definite cause of disease. Negative results, from patients with symptom beyond seven days, should be treated as presumptive and confirmed with a molecular assay, if necessary, for patient management. Negative results do not rule out SARS-CoV-2 infection and should not be used as the sole basis for treatment or patient management decisions, including infection control decisions. Negative results should be considered in the context of a patient's recent exposures, history and the presence of clinical signs and symptoms consistent with COVID- The SARS-CoV-2 Antigen Rapid Test is intended for use by trained clinical laboratory personnel and individuals trained in point of care settings. SARS-CoV-2 Antigen Rapid Test is intended to be used as an aid in the diagnosis of SARS-CoV-2 infection. ### SUMMARY The novel coronaviruses belong to the β genus. COVID-19 is an acute respiratory infectious disease. People are generally susceptible. Currently, the patients infected by the novel coronavirus are the main source of infection; asymptomatic infected people can also be an infectious source. Based on the current epidemiological investigation, the incubation period is 1 to 14 days, mostly 3 to 7 days. The main manifestations include fever, fatigue and dry cough. Nasal congestion, runny nose, sore throat, myalgia and diarrhea are found in a few cases. ### PRINCIPLE The SARS-CoV-2 Antigen Rapid Test is a qualitative membrane based chromatographic immunoassay for the qualitative detection of the nucleocapsid protein antigen from SARS-CoV-2 in human nasal swab specimens. When specimens are processed and added to the test cassette, SARS-CoV-2 antigens, if present in the specimen, will react with the anti-SARS-CoV-2 antibody-coated particles, which have been pre-coated on the test strip. The mixture then migrates upward on the membrane by capillary action. The antigen-conjugate complexes migrate across the test strip to the reaction area and are captured by a line of antibody bound on the membrane. Test results are interpreted visually at 15-30 minutes based on the presence or absence of visually colored lines. To serve as a procedure control, a colored line will always appear in the control line region indicating that proper volume of specimen has been added and membrane wicking has occurred. ### REAGENTS The test cassette contains anti-SARS-CoV-2 antibodies. The positive control swab contains SARS-CoV-2 recombinant antigen pre-coated on the swab. ### **PRECAUTIONS** - For professional in vitro diagnostic use only. Do not use after the expiration date. - Do not eat, drink, or smoke in the area where the specimens or kits are handled. - . Do not use the test if the pouch is damaged. - Handle all specimens as if they contain infectious agents. Observe established precautions against biological hazards throughout testing and follow the standard procedures for proper disposal of specimens. - Wear protective clothing such as laboratory coats, disposable gloves, mask and eye protection when specimens are being tested. - The used test should be discarded according to local regulations. The used test should be considered potentially infectious and be discarded according to local regulations. - · Humidity and temperature can adversely affect results. - This package insert must be read completely before performing the test. Failure to follow directions in insert may yield inaccurate test results. - The test line for a high viral load sample may become visible within 15 minutes, or as soon as the sample passes the test line region. - The test line for a low viral load sample may become visible within 30 minutes. ### STORAGE AND STABILITY - The kit can be stored at temperatures between 2 30 °C. - The test is stable until the expiration date printed on the sealed pouch. - . The test must remain in the sealed pouch until use. - DO NOT FREEZE. - · Do not use after the expiration date. ### **MATERIALS** ## Materials Provided - Positive Control Swab Negative Control Swab - Disposable Swabs* Extraction Buffer Extraction Tubes Package Insert Test Cassettes * The Disposable Swabs are produced by another manufacturer. ### Materials Required But Not Provided Personal Protective Equipment Timer ### SPECIMEN COLLECTION AND PREPARATION - The SARS-CoV-2 Antigen Rapid Test can be performed using nasal swab specimens. - Testing should be performed immediately after specimen collection, or at most within one (1) hour after specimen collection, if stored at room temperature (15-30°C). - · To collect a nasal swab sample: - Carefully insert a Disposable Swab, provided with your kit, into one nostril. Using gentle rotation, push the swab up to 2.5 cm (1 inch) from the edge of the nostril. Rotate the swab 5 times against the mucosa inside the nostril to ensure sufficient specimen collection. Using the same swab, repeat this process in the other nostril to ensure that an adequate amount of sample is collected from both nasal cavities. Withdraw the swab from the nasal cavity. The specimen is now ready for preparation using the extraction buffer tubes. ### **DIRECTIONS FOR USE** ### Allow the test and extraction buffer to reach room temperature (15-30 °C) prior to testing. - 1. Use an extraction buffer tube for each specimen to be tested and label each tube appropriately. - 2. Hold the extraction buffer bottle upside down vertically, then add approximately 300 μ L (10~12 drops) of extraction buffer to the extraction tube. - 3. Insert the swab into the tube and swirl it for 30 seconds. Then rotate the swab at least 5 times while squeezing the sides of the tube. Take care to avoid splashing contents out of the tube. - 4. Remove the swab while squeezing the sides of the tube to extract the liquid from the swab. - Attach the dropper tip firmly onto the extraction buffer tube containing the sample. Mix thoroughly by swirling or flicking the bottom of the tube. - Remove the test cassette from the foil pouch and use it as soon as possible. - Place the test cassette on a flat and clean surface. - 8. Add the processed specimen to the sample well of the test cassette. - a. Invert the extraction buffer tube with the dropper tip pointing downwards and hold it vertically. - b. Gently squeeze the tube, dispensing 4 drops of the processed specimen into the sample well. - Wait for the colored line(s) to appear. The result should be read at 15-30 minutes. Do not read the result after 30 minutes. ### INTERPRETATION OF RESULTS (Please refer to the illustration above) **NEGATIVE:** Only one colored control line appears in the control region (C). No apparent colored line appears in the test line region (T). This means that no SARS-CoV-2 antigen was detected. **POSITIVE:*** Two distinct colored lines appear. One line in the control line region (C) and the other line-in the test line region (T). This means that the presence of SARS-CoV-2 antigen was detected. *NOTE: The intensity of the color in the test line (T) may vary depending on the level of the SARS-CoV-2 antigen present in the specimen. Therefore, any shade of color in the test line region (T) should be considered positive. INVALID: Control line fails to appear. Insufficient specimen volume or incorrect operation are the most likely reasons for control line failure. Review the procedure and repeat the test with a new test cassette. If the problem persists, discontinue using the test kit immediately and contact your local distributor. ### QUALITY CONTROL Internal procedural controls are included in the test. A colored line appearing in the control line region (C) is an internal procedural control. It confirms sufficient specimen volume and correct procedural technique. Positive and Negative control swabs are supplied with each kit. These control swabs should be used to ensure that the test cassette and that the test procedure is performed correctly. Follow the "DIRECTIONS FOR USE" section to perform the control test. The control swabs can be tested under any of the following circumstances: - When new lot of tests are used and/or when a new operator performs the test. - . At periodic intervals as dictated by local requirements, and/or by the user's Quality Control procedures. ### LIMITATIONS - The SARS-CoV-2 Antigen Rapid Test is for in vitro diagnostic use only. The test should be used for the detection of SARS-CoV-2 antigens in nasal swab specimens only. The intensity of the test line does not necessarily correlate to SARS-CoV-2 viral titer in the specimen. - Specimens should be tested as quickly as possible after specimen collection and at most within the hour following collection. - 3. Use of viral transport media may result in decreased test sensitivity. - A false-negative test may result if the level of antigen in a sample is below the detection limit of the test or if the sample was collected incorrectly. - 5. Test results should be correlated with other clinical data available to the physician. - 6. A positive test result does not rule out co-infections with other pathogens. - 7. A positive test result does not differentiate between SARS-CoV and SARS-CoV-2. - 8. A negative test result is not intended to rule out other viral or bacterial infections. - A negative result, from a patient with symptom onset beyond seven days, should be treated as presumptive and confirmed with a molecular assay, if necessary, for clinical management. (If the differentiation of specific SARS viruses and strains is needed, additional testing is required.) ### PERFORMANCE CHARACTERISTICS ### Clinical Sensitivity, Specificity and Accuracy The performance of SARS-CoV-2 Antigen Rapid Test was established with 577 nasal swabs collected from individual symptomatic patients who were suspected of COVID-19. The results show that the relative sensitivity and the relative specificity are as follows: ### Clinical Performance for SARS-CoV-2 Antigen Rapid Test | Method | | RT-PCR | | Total | |----------------------------------|----------|----------|----------|---------| | SARS-CoV-2 Antigen
Rapid Test | Results | Negative | Positive | Results | | | Negative | 413 | 5 | 418 | | | Positive | 2 | 157 | 159 | | Total Results | | 415 | 162 | 577 | Relative Sensitivity: 96.9% (92.8%-98.9%)* Relative Specificity: 99.5% (98.1%-99.9%)* Accuracy: 98.8% (97.5%-99.5%)* *95% Confidence Intervals Stratification of the positive samples post onset of symptoms between 0-3 days has a positive percent agreement (PPA) of 98.7% (n=75) and 4-7 days has a PPA of 96.7% (n=60). Positive samples with Ct value ≤33 has a higher positive percent agreement (PPA) of 98.7% (n=150) . ### Limit of Detection (LOD) The LOD of SARS-CoV-2 Antigen Rapid Test was established using limiting dilutions of a viral sample inactivated by gamma irradiation. The viral sample was spiked with negative human nasal sample pool into a seral of concentrations. Each level was tested for 30 replicates. The results show that the LOD is 1.6*10² | CID50/IIIL. | | | | | |---|--------------------|--|--|--| | Sample SARS-CoV-2 Concentration | % Positive (Tests) | | | | | 1.28*10 ³ TCID ₅₀ /mL | 100% (30/30) | | | | | 6.4*10 ² TCID ₅₀ /mL | 100% (30/30) | | | | | 3.2*10 ² TCID ₅₀ /mL | 100% (30/30) | | | | | 1.6*10 ² TCID ₅₀ /mL | 96.7% (29/30) | | | | | 8*10 TCID ₅₀ /mL | 0% (0/30) | | | | ### Cross-Reactivity (Analytical Specificity) and Microbial Interference Cross-reactivity was evaluated by testing a panel of related pathogens and microorganisms that are likely to be present in the nasal cavity. Each organism and virus were tested in the absence or presence of heat-inactivated SARS-CoV-2 virus at low positive level. No cross-reactivity or interference was observed with the following microorganisms when tested at the concentration presented in the table below. The SARS-CoV-2 Antigen Rapid Test does not differentiate between SARS-CoV and SARS-CoV-2. | Pote | ential Cross-Reactant | Test Concentration | Cross-Reactivity
(in the absence of
SARS-CoV-2 virus) | Interference
(in the presence of
SARS-CoV-2 virus) | |-------|-----------------------------|---|---|--| | | Adenovirus | 1.14 x 10 ⁶ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Enterovirus | 9.50 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Human coronavirus
229E | 1.04 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Human coronavirus
OC43 | 2.63 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Human coronavirus
NL63 | 1.0 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Human
Metapneumovirus | 1.25 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | MERS-coronavirus | 7.90 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | Virus | Influenza A | 1.04 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | ⋝ | Influenza B | 1.04 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Parainfluenza virus 1 | 1.25 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Parainfluenza virus 2 | 3.78 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Parainfluenza virus 3 | 1.0 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Parainfluenza virus 4 | 2.88 x 10 ⁶ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Respiratory syncytial virus | 3.15 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Rhinovirus | 3.15 x 10 ⁵ TCID ₅₀ /mL | No
3/3 negative | No
3/3 positive | | | Human coronavirus-
HKU1 | 1 x 10 ⁵ copies/mL | No
3/3 negative | No
3/3 positive | | | Bordetella pertussis | 2.83 x 10 ⁹ CFU/mL | No | No | |--------------------------|-------------------------------|--|--------------|--------------| | | | | 3/3 negative | 3/3 positive | | | Chlamydia trachomatis | 2 12 v 108 CELI/ml | | No | | | | 3.13 X 10 CF0/IIIL | 3/3 negative | 3/3 positive | | | Haemophilus influenza | 1.36 x 10 ⁸ CFU/mL No
3/3 negative 3/3 | No | | | | | | 3/3 negative | 3/3 positive | | | La mia malla muna cuma ambila | 4.08 x 10 ⁹ CFU/mL | No | No | | | Legionella pneumophila | | 3/3 negative | 3/3 positive | | | Mycobacterium
tuberculosis | 1.72 x 10 ⁷ CFU/mL | No | No | | | | | 3/3 negative | 3/3 positive | | | Mycoplasma pneumoniae | 7.90 x 10 ⁷ CFU/mL | No | No | | <u>.a</u> | | | 3/3 negative | 3/3 positive | | Bacteria | Ctanbula access auraus | 1.38 x 10 ⁷ CFU/mL | No | No | | 30 | Staphylococcus aureus | | 3/3 negative | 3/3 positive | | ä | Staphylococcus | 2.32 x 10 ⁹ CFU/mL | No | No | | | epidermidis | 2.32 X 10° CFU/ML | 3/3 negative | 3/3 positive | | | Streptococcus | 1.04 x 108 CFU/mL | No | No | | | pneumoniae | 1.04 X 10° CFU/ML | 3/3 negative | 3/3 positive | | | Streptococcus | 4.10 x 10 ⁶ CFU/mL | No | No | | | pyogenes | 4.10 X 10° CFU/ML | 3/3 negative | 3/3 positive | | | Pneumocystis jirovecii- | 8.63 x 10 ⁷ CFU/mL | No | No | | | S. cerevisiae | 8.03 X 10 CF0/IIIL | 3/3 negative | 3/3 positive | | | Pseudomonas | 1.87 x 108 CFU/mL No
3/3 negative | No | No | | | aeruginosa | | 3/3 positive | | | | Oblem die meet meet | 1×10 ⁶ IFU/ml | No | No | | | Chlamydia pneumoniae | | 3/3 negative | 3/3 positive | | Yeast | Candida albicans | 1.57 x 108 CFU/mL | No | No | | reast | Caridida dibicaris | 1.57 X 10 CF0/IIIL | 3/3 negative | 3/3 positive | | Pooled human nasal wash | | | No | No | | Fooled Human Hasai Wasii | | | 3/3 negative | 3/3 positive | ### Interfering Substances The following substances, naturally present in respiratory specimens or that may be artificially introduced into the nasal cavity or nasopharynx, were evaluated. Each substance was tested in the absence or presence of SARS-CoV-2 virus at low positive level. The final concentration of the substances tested are listed below and were found not to affect test performance. | Interfering
Substance | Active Ingredient | Concentration | Results (in the absence of SARS-CoV-2 virus) | Results
(in the presence of
SARS-CoV-2 virus) | |--|---|---------------|--|---| | | Biotin | 2.4 mg/mL | 3/3 negative | 3/3 positive | | Endogenous | Mucin | 0.5% w/v | 3/3 negative | 3/3 positive | | | Whole Blood | 4% v/v | 3/3 negative | 3/3 positive | | Afrin Original Nasal
Spray | Oxymetazoline | 15% v/v | 3/3 negative | 3/3 positive | | ALKALOL Allergy
Relief Nasal Spray | Homeopathic | 1:10 Dilution | 3/3 negative | 3/3 positive | | Chloraseptic Max
Sore Throat
Lozenges | Menthol,
Benzocaine | 1.5 mg/mL | 3/3 negative | 3/3 positive | | CVS Health
Fluticasone
Propionate Nasal
Spray | Fluticasone propionate | 5% v/v | 3/3 negative | 3/3 positive | | Equate Fast-Acting
Nasal Spray | Phenylephrine | 15% v/v | 3/3 negative | 3/3 positive | | Equate Sore Throat
Phenol Oral
Anesthetic Spray | Phenol | 15% v/v | 3/3 negative | 3/3 positive | | Original Extra
Strong Menthol
Cough Lozenges | Menthol | 1.5 mg/mL | 3/3 negative | 3/3 positive | | NasalCrom Nasal
Spray | Cromolyn | 15% v/v | 3/3 negative | 3/3 positive | | NeilMed NasoGel
for Dry Noses | Sodium
Hyaluronate | 5% v/v | 3/3 negative | 3/3 positive | | Throat Lozenge | Dyclonine
Hydrochloride | 1.5mg/mL | 3/3 negative | 3/3 positive | | Zicam Cold Remedy | Galphimia glauca,
Luffa operculata,
Sabadilla | 5% v/v | 3/3 negative | 3/3 positive | | Antibiotic | Mupirocin | 10 mg/mL | 3/3 negative | 3/3 positive | | | Tamiflu | Oseltamivir | 5 mg/mL | 3/3 negative | 3/3 positive | |--|--|-----------------------|---------|---------------|--------------| | | Tarrina | Phosphate | 0g,2 | o, o nogativo | 0,0 posiaro | | | Antibiotic | Tobramycin | 4 μg/mL | 3/3 negative | 3/3 positive | | | Mometasone
Furoate Nasal
Spray | Mometasone
Furoate | 5%v/v | 3/3 negative | 3/3 positive | | | Physiological
Seawater Nasal
Cleaner | NaCl | 15%v/v | 3/3 negative | 3/3 positive | ### PRECISION ### Intra-Assav Within-run precision was determined using 10 replicates of specimens: negative control and SARS-CoV-2 antigen positive controls. The specimens were correctly identified >99% of the time. ### Inter-Assay Between-run precision was determined using 10 independent assays on the same specimen: negative specimen and SARS-CoV-2 antigen positive specimen. Three different lots of the SARS-CoV-2 Antigen Rapid Test were tested using these specimens. The specimens were correctly identified >99% of the time. ### **BIBLIOGRAPHY** - Shuo Su, Gary Wong, Weifeng Shi, et al. Epidemiology, Genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology, June 2016, vol. 24, No. 6: 490-502 - Susan R. Weiss, Julian L. Leibowitz, Coronavirus Pathogenesis, Advances in Virus Research, Volume 81: 85-164 ### Index of Symbols Contains sufficient for Manufacturer Temperature limit <n> tests In vitro diagnostic 2 IVD Use-by date Do not reuse medical device Consult instructions for \prod i REF LOT Batch code Catalogue number EC REP Authorized representative in the European Community Date of manufacture # Index of Contents SARS-CoV-2 Antigen Negative Control Swab Positive Control Swab Extraction Tubes Extraction Buffer Disposable Swabs SARS-CoV-2 Antigen Negative Control Swab Positive Control Swab Extraction Tubes Extraction Buffer Disposable Swabs No.21 ACON Biotech (Hangzhou) Co., Ltd. No.210 Zhenzhong Road, West Lake District. Hangzhou. P.R.China. 310030 SARS-CoV-2 Antigen Rapid Test ϵ SARS-CoV-2 Antigen Rapid Test EC REP MedNet GmbH Borkstrasse 10 48163 Muenster, Germany Distributor: www.swisspointofcare.com Number: 1151255102 Effective date: 2020-xx-xx