

PAHT GK 9874 NT

1 Introduction (from supplier)

It is a high-temperature polyamide-based material. It has the strength of a PA6 without sacrificing any of its printability. The water uptake is half, and its absorption rate is four times slower when compared with standard PA6. No heated chamber is required, and no warping is observed. It is compatible with HIPS and PVA support materials.

Benefits	Disadvantages	
Electrically insulator	Can be stringy	
Low Density material/lightweight	Absorbs moisture	
Hollow glass spheres	Rough surface finish	

2. Properties

Properties		Data sheet extract
Stiffness (Emodulus)	***	4200 MPa
Hardness	***	No data
Impact strength	***	26 kJ/m^2
Temperature resistance	****	120 degrees C long term, 160 short term
Wear resistance	***	No data
Flexibility	*	No
Chemical resistance	**	No data

3. Printing process and adhesion

Adhesion type	-	Magigoo PA
Printability	***	Good when dry
Warping	*	No
Layer adhesion	****	Good

4. Compatibility

Print core type	AA 0.25	AA 0.4	AA 0.8	BB 0.4	BB 0.8	CC 0.6
	×	<	×	×	×	X
Support material	PVA			Yes		
	Breakaway	Breakaway		No		

5. Tips and tricks

Make sure before printing the material is properly dried. If not dried the material will ooze with potential stringing.

If properly dried the material prints very easy and very strong and tight parts can be printed.

It is advisable to keep the material in a dry environment while printing.

6. Material storage

If stringing appears dry the material. Bets to ensure that the material si fully dried before launching a print.

6. Material handling and drying

If stringing or extrusion problems appear, dry the material according to the following conditions:

Drying temperature	Drying time	Recommended equipment
80 °C	12 - 14 hours	(Dehumidifying) oven

Important: this material will absorb moisture quite fast. best to print this material right from a dryer or material station. Keep the material in a seal bag with desiccant when not printing.

7. Suitable industries

Based on material properties, this material is often used in the following industries:

Packaging

Industrial

MRO

8. Use-cases and applications