bd ## medicair GZ Institute of Microbiology **TEST REPORTS** # Sterilization Rate TEST REPORT | Report Number | KJ20200448 | | |----------------|-------------------------|--| | Name of Sample | MedicAir - Air Purifier | | | Applicant | Bryant Medical | | ## **TEST REPORT** Date Received: Feb. 24, 2020 | | | Date Ana | lyzed: Feb. 24, 202 | |------------------------|---|------------------------|----------------------| | Name of Sample | AIR PURIFIER | Source of Sample | Delivery | | Applicant | Bryant Medical | Client | Priyam Patel | | Manufacturer | Bryant Medical | Brand | MedicAir | | Type and Specification | FOZKYGB-03 | Quantity of Sample | 1PC | | Date of Production | | State of Sample | Machine | | Batch Number | | Packing of Sample | In box | | Sample Picture | GR 21551 3-2010 Antibacterial and cl | eaning function for ho | usehold and simil | | Standard and Methods | GB 21551.3-2010 Antibacterial and cle
electrical appliances-Particular requirement | | usehold and simila | | Items of Analysis | Eliminating Bacterial Rate (Staphylococcu Klebsiella pneumoniae ATCC 4352) | s aureus ATCC 6538, Es | cherichia coli 8099, | | Remarks | | | | | | | | | ## **TEST REPORT** Date Received: Feb. 24, 2020 Date Analyzed: Feb. 24, 2020 #### Test Method for Air Purifier Disinfection Performance: 1. Test Equipment 1) Strain: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae 2) Microbial aerosol generator: TK-3 3) Culture media: NA 4) Sampling equipment: six-stage sieve sampler 2. Test Conditions 1) The volume of the test chamber: 30 m³ 2) Environment temperature: (20~25) ℃ 3) Environment humidity: (50~70) %RH 3. Operation Conditions of the Air Purifier Set the switch to position "The highest gear". 4. Test Procedure - Get a bacteria slant culture (4~7 generation) which is incubated at 37 °C for 24 h, wash the culture from this slant with 10 mL NB, filter the liquid culture by aseptic cotton buds, and dilute this inoculums with NB as appropriate. - 2) The equipments are placed in the test chambers, close the door, and turn on the HEPA filter system. Simultaneously operate the environmental control devices until the temperature reaches 20 °C~25 °C, relative humidity reaches 50-70%. Turn off the chamber environmental control system. - Release microbial aerosol: turn on the microbial aerosol generator, then turn on the ceiling fan, turn off the fan after 10 min, and let stand for 15 min. - 4) Original bacteria aerosols collected by six-stage sieve sampler. - 5) The air purifier are adjusted to the highest air cleaning mode setting for test (test group). Bacteria aerosols (control group and test group) are collected at 60 min. - 6) Choose 2 NA plates (the same batch) as the negative control, and culture them on the same condition with the samples. - 7) Run the test three times and take the mean as the final result. - 5. Computational Formula Natural decay rate $$N_i(\%) = \frac{V_0 - V_i}{V_0} \times 100$$ Where: V_0 = original bacteria count of control group; V_t = bacteria count after treatment of control group. Killing Rate $$K_t(\%) = \frac{V_1 \times (1 - N_t) - V_2}{V_1 \times (1 - N_t)} \times 100$$ Where: V_1 = original bacteria count of test group; V_2 = bacteria count after treatment of test group. ## **TEST REPORT** Date Received: Feb. 24, 2020 Date Analyzed: Feb. 24, 2020 ## **Test Results** | | | | | C | Control Group | 1 | Test | Group | Eliminating | | |----------------------------------|-----------|--------------------|------------|----------------------|---|--|---------------------------|--|--|--------------------------| | Number of Sample Test Time (min) | Time Test | | Strain Nur | Test
Number | Original Bacteria Count V_0 (cfu/m ³) | Bacteria
Count after
Treatment
V_t
(cfu/m 3) | Natural Decay Rate N, (%) | Original Bacteria Count V ₁ (cfu/m ³) | Bacteria
Count after
Treatment
V_2
(cfu/m ³) | Bacterial Rate K_t (%) | | | | | 1 | 1.18×10 ⁵ | 9.39×10 ⁴ | 20.42 | 1.29×10 ⁵ | 7 | 99.99 | | | | | Staphylococcus | 2 | 1.25×10 ⁵ | 9.72×10 ⁴ | 22.24 | 1.27×10 ⁵ | 7 | 99.99 | | | | | aureus | 3 | 1.45×10 ⁵ | 1.15×10 ⁵ | 20.69 | 1.05×10 ⁵ | 7 | 99.99 | | | | | | Mean | | | | | | 99.99 | | | | | | 1 | 1.30×10 ⁵ | 8.39×10 ⁴ | 35.46 | 1.22×10 ⁵ | 7 | 99.99 | | | | | 0 Escherichia coli | 2 | 1.24×10 ⁵ | 8.31×10 ⁴ | 32.98 | 1.45×10 ⁵ | 7 | 99.99 | | | KJ20200448-1 | 60 | | 3 | 1.37×10 ⁵ | 8.90×10 ⁴ | 35.04 | 1.31×10 ⁵ | 7 | 99.99 | | | | | | Mean | | | | | | 99.99 | | | | | | 1 | 1.26×10 ⁵ | 9.63×10 ⁴ | 23.57 | 1.11×10 ⁵ | 7 | 99.99 | | | | | Klebsiella | 2 | 1.32×10 ⁵ | 9.97×10 ⁴ | 24.47 | 1.38×10 ⁵ | 7 | 99.99 | | | | | pneumoniae | 3 | 1.12×10 ⁵ | 8.86×10 ⁴ | 20.89 | 1.33×10 ⁵ | 7 | 99.99 | | | | | a | Mean | | | | | | 99.99 | | Note: The negative control group was sterile growth. ***End of report*** Editor Checker Issuer This Date Reported 06.03.20 ## Statements - 1. The report would be invalid under the following conditions: altered, added, deleted, copied, without the special seal for inspection or signatures by approver. - 2. For the received sample, the sample information in the report is claimed by the applicant, the inspection unit is not responsible for its authenticity. The report is responsibility for the received sample only. - 3. If there is any objection to the inspection report, it should be presented to the inspection unit within 15 working days from the issuance date, otherwise the report shall be deemed as having been accepted. Microbiological item is not subjected to retest. - 4. The report and the name of the inspection unit shall not be used for product labels, advertisements, awards and merchandise publicity. - 5. The items marked with "*" in the report are not accredited by CNAS or CMA, The items marked with "#" are accredited by CNAS, The items marked with "+" are accredited by CMA. - 6. The test data and results of items which are not accredited by CMA, only used as scientific research, teaching or internal quality control. - 7. Any ambiguity by the language which used in the report, the Chinese shall prevail. ## Clean Air Delivery TEST REPORT Report Number KY20200045 Name of Sample MedicAir - Air Purifier Applicant Bryant Medical ## **TEST REPORT** Date Received: Feb. 11, 2020 Date Analyzed: Feb. 13, 2020 | | | Date Anal | yzed: Feb. 13, 2020 | |------------------------|---|--------------------|---------------------| | Name of Sample | AIR PURIFIER | Source of Sample | Delivery | | Applicant | Bryant Medical | Client | Priyam Patel | | Manufacturer | Bryant Medical | Brand | MedicAir | | Type and Specification | FOZKYGB-03 | Quantity of Sample | 1PC | | Date of Production | | State of Sample | Machine | | Batch Number | | Packing of Sample | In box | | Sample Picture | | | | | Standard and Methods | GB/T 18801-2015 Air cleaner | | | | Items of Analysis | CADR (TVOC) *Removal Rate(Methyl mercaptan) | | | | Remarks | | | | ## TEST REPORT Date Received: Feb. 11, 2020 Date Analyzed: Feb. 13, 2020 ## Method for Testing Clean Air Delivery Rate of Gaseous Pollutant: 1. Testing Condition 1) Environment temperature: (25 ± 2) °C 2) Environment humidity: (50 ± 10) %RH. 2. Testing Equipment Test chamber (30 m³), constant current atmospheric sampler, gas chromatograph, VOC analyzer. 3. Running State of the Machine Set the switch to position "the highest grade". 4. Test Procedure - 1) Place the air purifier into the chamber according to the standard's requirements. Set the air purifier to the particular running state. Make sure the air purifier runs normally, and then turn off the air purifier. - 2) Purify the air in the chamber using the HEPA filter. Make sure the background concentration of the pollutants reaches a particular level, and then turn on the temperature and humidity control device. Keep the temperature and humidity control device running until the temperature and the humidity reaches the standard's requirement. - A certain amount of gaseous pollutant is added into the chamber using the gaseous pollutant generator. Turn off the gaseous pollutant generator while concentration of the pollutants reaches the standard's requirement. - 4) Mix the gaseous pollutant for 10 min, and then turn off the ceiling mixing fan. - 5) Sample the initial concentration after the fan is stopped. - 6) Turn on the air purifier. Collect samples at 5-minute intervals for 60 minutes. - 7) According to the step 1) ~ 6), test the natural decay without the air purifier. - 8) The CADR should be tested in the same way for 3 times, and between every tests the air purifier should be idled for more than 24 h. The last test should be used for the calculation of CADR final result. - Note 1. Before the test, the air purifier has been running for more than 1 h. - Note 2. The data less than the requirement of GB/T 18883 is invalid. - Note 3. If the valid data points are less than six, Crossed sampling can be used. - 5. Computational Formula CADR $(m^3/h) = 60 \times (k_e - k_p) \times V$ Where: $k_e = \text{total decay constant}$; $k_n = \text{natural decay constant}$; $V = \text{volume of the test chamber, m}^3$ #### **Test Results** | Number of Sample | Pollutant | Natural Decay Constant k_n (min-1) | Total Decay Constant k_e (min ⁻¹) | CADR
(m³/h) | |------------------|-----------|--------------------------------------|---|----------------| | KY20200045-1 | TVOC | 0.0007 | 0.0343 | 60.5 | ### TEST REPORT Date Received: Feb. 11, 2020 Date Analyzed: Feb. 13, 2020 ## Method for Testing Gaseous Pollutant Removal: 1. Test Conditions 1) Environment temperature: (25 ± 2) °C 2) Environment humidity: (50 ± 10) %RH. 2. Test Equipment Test chamber (30 m³), Compound gas detector. 3. Operation Conditions of the Machine Set the switch to position "the highest grade". 4. Test Procedure - Place the air cleaner to be tested in the chamber according to the requirements of standard and set the air cleaner controls to the conditions for test. Test for proper operation, then shut off with switch external to test chamber. - 2) Using the chamber HEPA filter, allow the test chamber air to clean until the background pollutants reaches a level. Simultaneously operate the environment control devices until the room conditions (temperature and RH) reach a specified state. Turn off the chamber environmental control system (HEPA filter and humidifiers). - 3) A certain amount of gaseous pollutant is added into the chamber using the gaseous pollutant generator. After the initial concentration reaches the requirements of standards, close the generator. - 4) Mix the gaseous pollutant for 10 min, then turn off ceiling mixing fan. - 5) Wait for fan to stop, the initial concentration of sample is gathered. - 6) Turn on air cleaner. The sample is collected after 60 min. - 7) According to the step 1) \sim 6), test the natural decay without the air purifier. Computational Formula Natural decay rate $$N_i(\%) = \frac{C_0 - C_i}{C_0} \times 100$$ where: C_0' = the original concentration of control group; C_t' = the final concentration of control group Total decay rate $$N_t(\%) = \frac{C_0 - C_t}{C_0} \times 100$$ where: C_0 = the original concentration of test group; C_t = the final concentration of test group Removal rate $$K_t(\%) = \frac{C_0 \times (1 - N_t) - C_t}{C_0 \times (1 - N_t)} \times 100$$ #### **Test Results** | | | Test
Time
(min) | Control Group | | Test C | Damaval | | |---------------------|--------------|-----------------------|--------------------------|---------------------------------|-------------------------|----------------------------|------------------------| | Number of
Sample | Pollutant | | Concentration C' (mg/m³) | Natural Decay
Rate N_t (%) | Concentration C (mg/m³) | Total Decay Rate N_t (%) | Removal Rate K_i (%) | | KY20200045-1 | Methyl | 0 | 1.03 | | 1.07 | | | | | mercaptan 60 | 0.99 | 3.9 | 0.07 | 93.5 | 93.2 | | ***End of report*** Issuer 473 Date Reported 06.03.20 ## Statements - 1. The report would be invalid under the following conditions: altered, added, deleted, copied, without the special seal for inspection or signatures by approver. - 2. For the received sample, the sample information in the report is claimed by the applicant, the inspection unit is not responsible for its authenticity. The report is responsibility for the received sample only. - 3. If there is any objection to the inspection report, it should be presented to the inspection unit within 15 working days from the issuance date, otherwise the report shall be deemed as having been accepted. Microbiological item is not subjected to retest. - 4. The report and the name of the inspection unit shall not be used for product labels, advertisements, awards and merchandise publicity. - 5. The items marked with "*" in the report are not accredited by CNAS or CMA, The items marked with "#" are accredited by CNAS, The items marked with "+" are accredited by CMA. - 6. The test data and results of items which are not accredited by CMA, only used as scientific research, teaching or internal quality control. - 7. Any ambiguity by the language which used in the report, the Chinese shall prevail. ## Mite Allergen TEST REPORT | Report Number | KY20200044 | | |----------------|-------------------------|-----| | Name of Sample | MedicAir - Air Purifier | 325 | | Applicant | Bryant Medical | | Test No. KY20200044 ## GZ INSTITUTE OF MICROBIOLOGY ## **TEST REPORT** Date Received: Feb. 11, 2020 Date Analyzed: Feb. 14, 2020 | | | Date Analy | yzed: Feb. 14, 202 | |------------------------|-------------------------------|-----------------------------------|--------------------| | Name of Sample | Air Purifer | Source of Sample | Delivery | | Applicant | Bryant Medical | Client | Priyam Patel | | Manufacturer | Bryant Medical | Brand | MedicAir | | Type and Specification | FOZKYGB-03 | Quantity of Sample | 1PC | | Date of Production | | State of Sample | Machine | | Batch Number | | Packing of Sample | In box | | Sample Picture | | | | | Standard and Methods | Referring to T/GIEHA 009-201 | 8 The method for removing allerge | ns of air cleaner | | Items of Analysis | Mite Antigen Removal Rate (Da | ust mite Der f 1) | @ | | Remarks | | | | ## **TEST REPORT** Date Received: Feb. 11, 2020 Date Analyzed: Feb. 14, 2020 ### Test Method for Removing Mite Allergen: 1. Test Equipment Liquid impactor sampler, Centrifuge, Aerosol generator, Microtiter plate reader capable, etc. 2. Test Conditions 1) The volume of the test chamber: 30m³ Environment temperature: (20~24) [°]C 3) Environment humidity: (40~60) %RH 3. Operational Conditions of the Machine Set the switch to position "The highest gear". 4. Test Procedure - Place the air cleaner to be tested in the test chamber in accordance with standard request and set the air cleaner controls to the conditions for test. Test for proper operation, then turn off the air cleaner. - 2) Using the test chamber HEPA filter, allow the test chamber air to clean until the background concentration in the size range of 0.3 μm to 10 μm reaches a concentration of less than 1000 particles/L. Simultaneously operate the environmental control devices until the test chamber conditions have reached the requirements. - 3) When an acceptable test chamber background concentration is achieved record the background concentration, turn off the test chamber environmental control system. - 4) Connect the aerosol generator and atomize the prepared allergen solution into the test chamber until the initial concentration of the test reaches the requirements. - Connect the liquid impactor sampler to collect the atomized allergen aerosol, which is taken as the initial concentration of the tes. - 6) After the initial concentration is determined, open the air purifier to be tested and operate for 60min. Then collect the concentration of allergens in the cabin with the liquid impactor sampler again. - 7) Don't turn on the air purifier, repeat the steps 1-6) to do blank control and test natural attenuation. - 8) Double antibody sandwich ELISA was used to detect the content of allergen Der f1 in the samples. 5. Computational Formula Natural decay rate: $N_t(\%) = \frac{C_0 - C_t}{C_0} \times 100$ Where: C_0^i = original Der f 1 count of control group; C_t^i = Der f 1 count after treatment of control group. Killing Rate: $K_t(\%) = \frac{C_0 \times (1 - N_t) - C_t}{C_0 \times (1 - N_t)} \times 100$ Where: C_0 = original Der f 1 count of test group; C_t = Der f 1 count after treatment of test group. #### **Test Results** | | | T | (| Control Group | | Test | Group | Removal | |---------------------|------------------|-----------------------|--|--|---|--|--|------------------------| | Number of
Sample | Mite
Allergen | Test
Time
(min) | Original
Count
C' ₀
(ng/m ³) | Count after
Treatment
C'_t
(ng/m ³) | Natural
Decay
Rate
N_{t} (%) | Original Count C_{θ} (ng/m^3) | Count after Treatment C_t (ng/m ³) | Removal rate K_t (%) | | KY20200044-1 | Der fl | 60 | 1317 | 1221 | 7.29 | 1435 | 11 | 99.17 | ***End of report*** Editor Checker Issuer 472 Date Reported 06.03.20 ## Statements - 1. The report would be invalid under the following conditions: altered, added, deleted, copied, without the special seal for inspection or signatures by approver. - 2. For the received sample, the sample information in the report is claimed by the applicant, the inspection unit is not responsible for its authenticity. The report is responsibility for the received sample only. - 3. If there is any objection to the inspection report, it should be presented to the inspection unit within 15 working days from the issuance date, otherwise the report shall be deemed as having been accepted. Microbiological item is not subjected to retest. - 4. The report and the name of the inspection unit shall not be used for product labels, advertisements, awards and merchandise publicity. - 5. The items marked with "*" in the report are not accredited by CNAS or CMA, The items marked with "#" are accredited by CNAS, The items marked with "+" are accredited by CMA. - 6. The test data and results of items which are not accredited by CMA, only used as scientific research, teaching or internal quality control. - 7. Any ambiguity by the language which used in the report, the Chinese shall prevail. ## CADR TEST REPORT Report Number KJ20160928 Name of Sample MedicAir - Air Purifier Applicant Bryant Medical ## REPORT FOR ANALYSIS Date Received: September 19, 2016 Date Analyzed: September 20, 2016 | | | Date Analyzed: Septem | ber 20, 2016 | |--|--|-----------------------|--------------------| | Name of Sample | Air Cleaner | Source of Sample | Delivery | | Applicant | Bryant Medical | Client | Priyam Patel | | Manufacturer | Bryant Medical | Sample Grade | | | Type and Specification | FOZKYGB-03 | Brand | MedicAir | | Date and Batch
Number of Production | | Quantity of Sample | 1 PC | | Sample Description | Machine | Packing of Sample | In box | | Sample Picture | | | | | Standard and Methods | GB/T 18801-2015 Air cleaner GB 21551.3-2010 Antibacterial and cleelectrical appliances-Particular requirem | | usehold and simila | | Items of Analysis | CADR (Formaldehyde, Particulate) Killing Rate (Staphylococcus albus ATC) | CC8032) | | | Remarks | | | | Blank Below ## REPORT FOR ANALYSIS Date Received: September 19, 2016 Date Analyzed: September 20, 2016 ### Method for testing gaseous pollutant removal: 1. Test conditions 1) Environment temperature: (25±2) ℃ 2) Environment humidity: (50±10) %RH. 2. Test equipment Test chamber (30 m³), constant current atmospheric sampler, UV-VIS spectrophotometer. 3. Operation conditions of the machine Set the switch to position "the highest wind speed". Test procedures - Place the air cleaner to be tested in the chamber according to the requirements of standard and set the air cleaner controls to the conditions for test. Test for proper operation, then shut off with switch external to test chamber. - 2) Using the chamber HEPA filter, allow the test chamber air to clean until the background pollutants reaches a level. Simultaneously operate the environment control devices until the room conditions (temperature and RH) reach a specified state. Turn off the chamber environmental control system (HEPA filter and humidifiers). - 3) A certain amount of gaseous pollutant is added into the chamber using the gaseous pollutant generator. After the initial concentration reaches the requirements of standards, close the generator. - 4) Mix the gaseous pollutant for 10 min, then turn off ceiling mixing fan. - 5) Wait for fan to stop, the initial concentration of sample is gathered. - 6) Turn on air cleaner. Collect samples at 3-minute intervals for 60 minutes. - 7) According to the step $1) \sim 6$), turn off air cleaner, test the natural decay. - 8) Air cleaner should let stand for at least 24 h between two tests, CADR of the third test as the final result. Note 1. Before the test, the air cleaner is to commissioning at least 1 h. - Note 2. The sample concentration under the limit value of national standard GB/T 18883 or other relevant regulations should be invalid. Note 3. If the valid data points less than six, porous cross of sampling can be used. Computational formula CADR $(m^3/h) = 60 \times (k_e - k_n) \times V$ Where: $k_{\rm e} = {\rm total\ decay\ constant};\ k_{\rm n} = {\rm total\ decay\ constant};\ V = {\rm volume\ of\ the\ test\ chamber,\ m}^3$ #### **Test Results** | Number of Sample | Pollutant | Natural decay constant k_n (min ⁻¹) | Total decay constant $k_{\rm e}$ (min ⁻¹) | CADR
(m³/h) | |------------------|--------------|---|---|----------------| | KJ20160928-1 | Formaldehyde | 0.0010 | 0.1108 | 197.6 | Blank Below ## REPORT FOR ANALYSIS Date Received: September 19, 2016 Date Analyzed: September 20, 2016 ## Method for Measuring Clean Air Delivery Rate of Particulate: 1. Test object Particulate (≥0.3µm) 2. Test conditions 1) Environment temperature: (25 ± 2)°C 2) Environment humidity: (50±10)% RH 3. Test equipments Test chamber (30 m³), Laser dust particle counter, Dilutors 4. Operation conditions of the machine Set the switch to position "The highest wind speed". 5. Test procedures - 1) Place the air cleaner to be tested in the test chamber in accordance with standard request and set the air cleaner controls to the conditions for test. Test for proper operation, then turn off the air cleaner. - 2) Using the test chamber HEPA filter, allow the test chamber air to clean until the background concentration in the size range of 0.3μm to 10μm reaches a concentration of less than 1000 particles/L. Simultaneously operate the environmental control devices until the test chamber conditions. - When an acceptable test chamber background concentration is achieved record the background concentration, turn off the test chamber environmental control system. - 4) Immediately light, then place one standard cigarette in the cigarette smoke generator, seal generator, open valve to chamber, to provide the required initial concentration(2×10⁶ ~ 2×10⁷ particles/L). Turn off air supply and close test chamber valve. Mix cigarette smoke for ten minutes after the initial concentration has been reached. - 5) Turning off ceiling mixing fan, begin to acquire the cigarette smoke particulate concentration. This test point is the initial concentration (C_0). - 6) Open the air cleaner and start the test as soon as the initial concentration of particulate matter is completed. Collect samples at two-minute intervals for 20 minutes. - 7) Test the natural decay according to the steps $1) \sim 6$, except that the air cleaner is unoperated. - 6. Computational formula CADR Q (m³/h) = $60 \times (k_e - k_n) \times V$ Where: $k_e = \text{total decay constant}$; $k_n = \text{natural decay constant}$; $V = \text{volume of the test chamber, m}^3$ #### **Test Results** | Number of Sample | Pollutant | Natural decay constant $k_n \text{ (min}^{-1}\text{)}$ | Total decay constant $k_{\rm e} ({\rm min}^{-1})$ | CADR Q (m 3 /h) | |------------------|-------------|--|--|----------------------| | KJ20160928-1 | Particulate | 0.0027 | 0.3834 | 685.3 | **Blank Below** ## REPORT FOR ANALYSIS Date Received: September 19, 2016 Date Analyzed: September 20, 2016 #### Method for Testing Air Disinfection: 1. Test equipments 1) Test microorganism: Staphylococcus albus 2) Microbial aerosol generator: PLG 2000 3) Culture media: NA 4) Sampling equipment: six-stage sieve sampler Test conditions 1) The volume of the test chamber: 30 m³ 2) Environment temperature: (20~25) ℃ 3) Environment humidity: (50~70) % RH 3. Operation conditions of the machine Set the switch to position "The highest wind speed". 4. Test procedures Get a Bacteria slant culture (4~7 generation) which is incubated at 37 °C for 24 h, wash the culture from this slant with 10 mL NB, filter the liquid culture by aseptic cotton buds, and dilute this inoculums with NB as appropriate. 2) The equipments are placed in the test chambers respectively, close the door, and open the HEPA filter. Simultaneously operate the environmental control devices until the experimental cabin temperature to be 20~25 °C, relative humidity to be 50~70 %RH. Turn off the chamber environmental control system. 3) Release microbial aerosol: turn on the microbial aerosol generator, release the microbial aerosol 15~20 min at 0.2 MPa, operate the ceiling mixing fan, then turn off the fan after 10 min, and let stand for 15 min. 4) Original Bacteria aerosols collected by six-stage sieve sampler. 5) The air cleaner are adjusted to the highest air cleaning mode setting for test (test group), Bacteria aerosols (control group and test group) are collected at 1 h respectively. 6) Choose 2 NA plates (the same batch) as the negative control, and culture them on the same condition with the samples. 7) Run the test three times and take the mean as the final result. 5. Computational formula Natural Decay Rate $N_t(\%) = \frac{V_0 - V_t}{V_0} \times 100$ Where: V_0 = Original Bacteria Count of Control Group; V_t = Bacteria Count after Treatment of Control Group. Killing Rate $$K_t(\%) = \frac{V_1 \times (1 - N_t) - V_2}{V_1 \times (1 - N_t)} \times 100$$ Where: V_1 = Original Bacteria Count of Test Group; V_2 = Bacteria Count after Treatment of Test Group. Blank Below ## REPORT FOR ANALYSIS Date Received: September 19, 2016 Date Analyzed: September 20, 2016 Test results | Number of Sample | Test
Bacteria | Test
Time
(h) | Test
Number | Control Group | | | Test Group | | | |------------------|-------------------------|---------------------|----------------|---|--|------------------------------|-------------------------------------|---|------------------------| | | | | | Original Bacteria Count V_0 (cfu/m 3) | Bacteria
Count after
Treatment
V_t
(cfu/m 3) | Natural Decay Rate N_t (%) | Original Bacteria Count V1 (cfu/m³) | Bacteria
Count after
Treatment
V ₂
(cfu/m ³) | Killing Rate K_t (%) | | KJ20160928-1 | Staphylococcus
albus | 1 | 1 | 1.15×10 ⁵ | 9.00×10^{4} | 21.74 | 1.16×10 ⁵ | 7 | 99.99 | | | | | 2 | 1.08×10 ⁵ | 8.32×10 ⁴ | 22.96 | 1.12×10 ⁵ | 7 | 99.99 | | | | | 3 | 1.36×10 ⁵ | 1.06×10 ⁵ | 22.06 | 1.33×10 ⁵ | 7 | 99.99 | | | | | Mean | | | | | | 99.99 | **Blank Below** Editor Issuer 472 Date Reported 11.10.2016 Page 6 of 6 **▶** +44 (0)1932 320064 | **▶** +44 (0)7990 113723 www.bryant.dental