

ZODIAC M200 CRB

High performance extruder nozzle for 3D printing

Features

- Extreme hardness
- Extraordinary wear resistance
- Limited abrasion and clogging
- Spherical cross section of the filament
- High operation temperature
- Perfect print results

Parameter	Value	Units	
Material (body)	Hardened tool steel		
Material (coating)	ZODIAC® bi-Layer		
Winding	M6		
Wrench size	8.08 ± 0.10	mm	
Internal bore	2.00 ± 0.10	mm	
Nozzle diameter	0.40 ± 0.01	mm	

^{*}All specifications according to the GUM Standard

Properties

- Hardened steel body with micro polish finishing of the internal bore
- Coating tested after Calotest (DIN EN ISO 1071-2, VDI 3198)
- Under coating for high adhesive strength (PECVD)
- Top layer coating for high abrasion and wear resistance

Parameter	Value	Units
Hardened tool steel	~ 62	HRC
Coating hardness	~3500	HV
Coating thickness (FTIR)	1.79	μm
Coefficient of friction (coating)	0.08-0.1	
Surface roughness (coating)	0.02	μm
Deviation of inner circularity (coated)	± 2.5	μm
Thermal conductivity (coating)	3.5	W×m ⁻¹ K ⁻¹
Thermal resistance	>450	°C

Abrasion testing

Test parameter	Value	Units	
Printing Mass	1000 g (Carbon-fiber PLA)		
Printing duration	1d 2h 34 min		
Filament	1.75 35%CRB		
Nozzle temperature	245	°C	
Bed temperature	80	°C	

Abuse testing of two nozzles was carried out according to the test parameters. The results showed decisive shortening of the competitor nozzle compared to the ZODIAC nozzle

Result (shortening of the nozzle tip due to abrasion)

Brass nozzle without ZODIAC coating	0.55 mm
Brass nozzle coated with ZODIAC coating	0.05 mm

Printing Parameters

Settings	Value	Units		
Retraction	0.8	mm		
Lift Z	0.6	mm		
Retraction speed	35	mm/s		
Print speed	60	mm/s		

Temperatures

	PLA	ABS	PETG	PC	PP	CPE	TPU	NYLON	VINYL
Nozzle	225°C	260°C	240°C	275°C	245°C	265°C	240°C	255°C	235°C
Bed	60°C	100°C	60°C	100°C	100°C	80°C	60°C	80°C	80°C

Sliding wear testing

In this comparison test we see the sliding wear of different nozzle suppliers. The diamond specimen (fig.1) is pressed with a contact pressure of 30N with a speed of 0.3mm/s onto the coated specimen (fig.2).

X= The Specimen gray and green show high wear already after 190m (End of the experiment)

Due to the low friction values, **ZODIAC** coated nozzles show no wear even after 1000m.

- Extreme hardness of the top layer coating stabilizes the bulk body and prevents shortening of the nozzle tip

- Micro polishing of the steel body lowers inner roughness of the nozzle and gives optimal layer construction